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I. INTRODUCTION 

LUNG cancer is the most common cause of cancer-

related death in men and women, and is responsible for 

1.3 million deaths annually, as of 2008 [1]. In particular, 

non small cell lung cancer (NSCLC) is the most 

prevalent type of lung cancer, accounting for about 80% 
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Analysis of primary lung tumors and disease in regional lymph nodes is 

important for lung cancer staging, and an automated system that can 
detect both types of abnormalities will be helpful for clinical routine. In 

this paper, we present a new method to automatically detect both 

tumors and abnormal lymph nodes simultaneously from positron 

emission tomography—computed tomography thoracic images. We 

perform the detection in a multistage approach, by first detecting all 

potential abnormalities, then differentiate between tumors and lymph 

nodes, and finally refine the detected tumors for false positive reduction. 

Each stage is designed with a discriminative model based on support 

vector machines and conditional random fields, exploiting intensity, 

spatial and contextual features. The method is designed to handle a 

wide and complex variety of abnormal patterns found in clinical 

datasets, consisting of different spatial contexts of tumors and abnormal 
lymph nodes. We evaluated the proposed method thoroughly on clinical 

datasets, and encouraging results were obtained. The watershed 

transforms combines aspects of both region-based and edge-based 

approaches to image segmentation. The regions are built by pixel 

grouping (region-based), whereas the edges of the regions are located 

based on image discontinuities (edge-based). This section presents the 

basic algorithm as well as more efficient algorithms for its 

implementation.  
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of all cases [2]. Staging, which assesses the degree of 

spread of the cancer from its original source, is the most 

important factor affecting the prognosis and potential 

treatment of lung cancer. For NSCLC, the tumor node 

metastasis (TNM) staging is the internationally agreed 

system, which involves analysis of the primary lung 

tumor, regional lymph nodes and distant metastases [2]. 

The the primary lung tumor and the locations of the 
abnormal regional lymph nodes indicate a stage IA to 

IIIB NSCLC, while any distant metastases suggest a 

stage IV NSCLC. Positron emission tomography—

computed tomography (PET-CT) with F-fluoro-deoxy-

glucose (FDG) tracer is now accepted as the best 

imaging technique for non-invasive staging [3]. While 

the CT scan provides anatomical information, it has 

relatively low soft tissue contrast causing difficulties in 

separating abnormalities from the surrounding tissues. 

On the other hand, the PET scan has high contrast and 

reveals increased metabolism in structures with rapidly 
growing cancer cells, but their localization is limited by 

the low spatial resolution in PET images. The integrated 

PET and CT scan thus provides complementary 

pathological and anatomical information. In current 

clinical routine, the localization and characterization of 

abnormalities need to be performed manually by 

examining all PET-CT slice pairs. To assist this time-

consuming process and potentially provide a second 

opinion to the reading physicians, an automated system 

that can provide fast and robust detection is highly 

desirable. In this work, our objective is to design a fully 
automatic methodology for simultaneous detection of 

primary lung tumors and disease in regional lymph 

nodes from PET-CT thoracic images. The problem 

exhibits two main challenges. First, although PET 

indicates areas with high uptake activities, it can also 

highlight non pathological areas (e.g., in myocardium), 

and the standard uptake value (SUV), which is a semi-

quantitative measure of normalized radioactivity 

concentration, normally exhibits high inter-patient 

variances. Second, separations between lung tumors and 

abnormal lymph nodes are difficult. Although they may 

be differentiated by segmenting the lung fields from CT 
images, if tumors extent to the surrounding organs 

especially the mediastinum, such segmentations may not 

be reliable. For complex cases involving tumors 

invasion into the mediastinum or lymph nodes abutting 

the lung field, the ability to differentiate between the 

two types of abnormalities are more challenging. In our 

prior work [4], we proposed a discriminative model with 

local-, spatial-, and object-level features for detecting 

tumor and abnormal lymph nodes. Whereas good 

detection performance was observed, several issues 

should be addressed: 

1) the method required the surrounding regions of 

tumors and abnormal lymph nodes to be accurately 

classified, which involved a heuristic-based grouping 
operation to separate the surrounding regions from the 

mediastinum,  

2) the regions belonging to a tumor or lymph node 

volume were classified individually, which could result 

in inconsistent labeling of the set of regions within a 3-

D volume, and 3) the high-uptake Myocardium 

introduced false positives in the detection results. 

Therefore, we now propose a new method, and the main 

distinctive characteristics of our method are: 1) a 

multistage detection is designed, where stage-1 detects 

all abnormalities from a 3-D image set, stage-2 
differentiates the detected abnormalities into tumors and 

abnormal lymph nodes, and stage-3 reduces the false 

positives of tumors; 2) each stage is optimized with a 

structural 

Discriminative approach, specifically we choose to 

employ support vector machine (SVM) [5] for 

classifying individual regions due to its high 

performance in classification without a generative 

Model, and the conditional random field (CRF) [6] for 

its capability in exploring the contextual information 

between multiple regions for a simultaneous 
classification of all regions in a 3-D volume; and 3) a 

number of new feature sets are designed, including 

various types of intensity, spatial and contextual 

features, for each stage of the detection method. We test 

our method on clinical PET-CT image sets, where 

multiple tumors and abnormal lymph nodes may co-

exist and introduce extra complexities. For example, the 

multiple abnormalities may exhibit large differences in 

uptake activities; and lymph nodes may reside very 

closely to the lung tumor and become particularly 

difficult to separate. The datasets also show a wide 

variety of abnormal patterns, with tumors of various 
shapes and spatial extents, and lymph nodes of different 

sizes and locations. 

A. Related Work 

Up to now, the amount of publications on simultaneous 

detection of lung tumors and disease in regional lymph 

nodes is limited. In our recent work [7], a region-based 
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approach with spatial information was reported, which 

however, proposed a detection method mainly to 

facilitate image retrievals, rather than focusing on 

optimization of the detection performance. Furthermore, 

the method required a separate class of tumor border, to 

work around the issue that the surrounding areas of 

tumors were often confused with the mediastinum. Such 

a tumor-border class complicated the training process, 
which was quite unnatural for the clinical process. Our 

later work [4] avoided such an issue with a multilevel 

discriminative model and more comprehensive spatial 

features, but also posed several improvement 

opportunities, which we explained in the previous 

section. A similar type of work is on lung tumor 

detection, which first detects all abnormalities, then 

extracts only those that are highly representative of lung 

tumors. By first segmenting the lung field, a threshold 

and fuzzy-logic based approach is then used to detect 

the lung tumors [8], but the detection performance is 
quite sensitive to the delineation accuracy of the lung 

field. Another approach attempts to handle tumors lying 

close to the edge of lung fields by incorporating the 

location, intensity, and shape information [9], but the 

method could potentially result in a large number of 

false positives with the predefined SUV thresholds. To 

reduce the false positives detected in the mediastinum, 

learning-based techniques with tumor-specific features 

were proposed [10], [11], but the methods were based 

on empirical studies of SUV distributions and tumor 

sizes, and did not seem to consider abnormal lymph 
nodes in the thorax. Another category of abnormality 

detection is to detect all instances from PET images, 

regardless of their types. Such approaches include a 

texture-based classification method [12], a water-shed 

based algorithm integrated with morphological 

measures [13], and a region-based SUV threshold 

computed based on the object and background ratio 

[14]. While the former two techniques operate on user-

selected volume-of-interest (VOI) or potential lesions, 

the last one assumes a large portion of the mediastinum 

to be normal. It was also shown that the detected 

abnormalities could be used to infer the cancerous status 
of a patient [15], which however, did not assess the 

detection performance of tumors or lymph nodes. There 

are also a number of existing works on lymph node 

detection, mostly on CT images. Most of these methods 

utilize the segmentation of the anatomical structures in 

mediastinum, such as airways, aorta and pulmonary 

artery [16]–[19]. A Hessian matrix for detecting the 

blob-like shaped lymph nodes is also used [18], [20]. A 

deformable registration approach has been recently 

proposed to restrict the search area of the blob detectors 

[20], using a probabilistic mediastina lymph node atlas 

created by combining all database images with manually 

delineated lymph nodes. A different discriminative 

method was also proposed to detect lymph nodes based 
on comprehensive appearance and spatial features [19]. 

Detection methods for other 

types of lymph nodes include the directional difference 

filtering for abdominal nodes [21] and the marginal 

space learning for axillaries nodes [22]. The detection 

performances of these approaches are usually highly 

related to the segmentation accuracy of anatomical 

structures, which is however, hard to avoid for CT 

images. These approaches also focus on the lymph 

nodes only, not considering cases with tumors, 

especially if they affect the appearances of the 
anatomical structures in the mediastinum. Another often 

studied area for lung tumor and regional lymph nodes is 

segmentation, including a number of different methods 

for tumor volume delineation on PET images with a 

comprehensive 

review in [23], those for CT [24]–[26], and PET-CT 

images [27]–[29], and lymph node segmentations on CT 

images [30]–[32]. While segmentation techniques 

normally assume a prior knowledge of presence of 

abnormalities with user annotated initial seeds or 

bounding boxes, detection algorithms aim to determine 
such presences and focus on optimizing the detection 

recall and precision. 

 

B. Outline 

The paper is structured as follows. Section II gives an 

overview of our proposed method. Sections III, IV and 

V describe the three stages of detection—abnormality 

detection, tumor and lymph node differentiation and 

tumor region refinement. Section VI introduces the 

materials and evaluation methods. The experimental 

results and discusses are presented in Sections VII and 

VIII concludes the paper. 
 

II. SUMMARY OF OUR PROPOSED METHOD 

An intuitive idea of detecting tumors and abnormal 

lymph nodes in a discriminative construct is to assign 

one most probable label to each voxel. Specifically, let 

be the 3-D image set of a thoracic scan with voxels. 
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Define the set of labels ,lung field, mediastinum, tumor 

and abnormal lymph nodes, and 

a label set with one label for each voxel . Then, the 

solution is to compute the maximum  a posteriori 

estimates using various types of classifiers(1) However, 

it is difficult to design a set of features sufficient for 

discriminating the four voxel classes in a single 

classification step. For example, the main distinctive 
feature between and is the spatial context, i.e., being 

within the lung field or mediastinum; But   how to 

describe this spatial feature without first labeling the 

regions of and is a challenge. Furthermore, in complex 

cases where the tumors are adjacent to or invading into 

the mediastinum, the surrounding areas of tumors might 

be classified as mediastinum, hence causing more 

difficulties in differentiating from . We thus propose a 

multistage discriminative model to detect tumors and 

abnormal lymph nodes. First, we made no distinction 

between the two types, and classified the voxels into the 
lung field ( ), mediastinum ( ), and abnormal region of 

interest (ROI), with two levels of features and SVM-

based soft labeling. Next, we designed a CRF model 

with unary and pairwise features in 3-D space to 

differentiate the detected abnormal volumes into tumors 

( ) and abnormal lymph nodes ( ). Last, we formulated 

another 3-D CRF model to refine the detected tumors 

for false positive reductions. 

 

III. MATERIALS AND EVALUATION METHODS 

Our dataset used in this study consists of image scans 
from 85 patients diagnosed with NSCLC, acquired using 

a Siemens TrueV 64 PET-CT scanner at the Royal 

Prince Alfred Hospital, Sydney. By selecting image 

slices covering all abnormalities in the thorax from each 

patient scan, the dataset contained 85 3-D image sets 

comprising 2480 transaxial PET-CT slice pairs. The 

reconstructed matrix size of each transaxial CT slice 

was 512x 512 voxels with a slice thickness of 3 mm. For 

PET images, the matrix size was 168 168 with a slice 

thickness of 5 mm. During the preprocessing, the PET 

images were linearly interpolated to the same voxel size 

as the CT images, and FDG uptake normalized into 
SUV based on the injected dose and patient‘s weight. 

We will simply refer to a slice pair as a slice in the 

following. For each 3-D image set, a senior expert 

indicated the quantities of lung tumors and abnormal 

lymph nodes, with descriptions of their locations and 

characteristics. This senior expert has read over 8000 

PET-CT lung cancer studies.  

 

 
Fig. 1. Illustration of stage-1 on abnormality 

detection. (a) A trans axial CT slice. (b) The co-

registered PET slice. (c) The CT slice after 

preprocessing. (d) The PET slice after preprocessing. 

(e) The regions created using quick-shift clustering. 

(f) The detection output based on low-level features, 

with blue arrows indicating the correspondence 

between gray scale values and region types. (g) The 

second detection output based on high-level features. 

(h) The soft labeling vector of the detected ROI 

region. 

To encode these ground truths for training and testing, 

we also created the following for each tumor and 

abnormal lymph node: 1) an approximate 3-D bounding 
box indicating its span of, and coordinates; 

and 2) a key slice showing its most prominent feature 

(e.g., size and spatial extent) with a corresponding mask 

depicting the region labeling. A total of 93 lung tumors 

and 65 abnormal lymph nodes were annotated, and 

grouped into several categories, as shown in Table I. 

Linear-kernel SVMs was used as the classifiers in this 

work. Based on our experiments, the linear-kernel 

construct was more suitable than the polynomial and 

Gaussian radial basis functions. The training was 

performed by first selecting 10 3-D image sets as the 
training pool, which roughly comprised of two 

annotated volumes for each category of tumors and 

abnormal lymph nodes. From this training pool, an 

initial set of training samples was chosen manually to 

represent the typical patterns of different classes. A 

bootstrapping approach was then conducted to include 
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training samples incrementally until no further 

improvements could be observed based on the training 

pool. No training samples were replaced and only 

additional samples were added during this bootstrapping 

procedure. The training pool was limited to 10 3-D 

image sets to minimize the risk of over-fitting; note that 

since 10 3-D sets actually contained a large number of 

image regions that could be used as training samples, 
the bootstrapping procedure was effective in reducing 

the size of training samples to about only 10% from the 

training pool. We evaluated the recall, precision, and F-

score  

of the detection results at each stage (22),(23),(24) 

where TP, FN, and FP were the numbers of true 

positive, false negative and false positive detections, 

which were all object (i.e., volume) based. In the 

PASCAL standard [41], an object detected with at least 

50% overlap with the ground truth volume would be 

considered TP. Since in our dataset the ground truth 
volume was an approximate 3-D bounding box, TP was 

determined based on visual inspections of all slices, 

with the criteria that 1) The detected volume depicted 

the actual abnormality relatively closely, with imprecise 

delineations allowed around the boundaries; and 2) a 

volume was labeled ( or ) consistently throughout the 

stack of slices, without any mislabeling within the 

detected volume. Inclusion of the latter criterion implied 

a more stringent requirement than the PASCAL 

standard. In addition, the detection performance was 

also measured with receiver operating characteristics 

(ROC) curves. The ROC curve was a plot of true 

positive rates (TPR) versus false positive rates (FPR), 

by varying the classification thresholds based on the 

probability estimates of the labeling outputs. The 

probability estimates of all regions from a volume were 

averaged as the object-level measure, which was 

gathered for all TP, FN, and FP volumes. The area 

under the curve  
(AUC) was then computed to quantify the detection 

performance. Furthermore, the discriminative power of 

each type of feature was evaluated by analyzing the 

probability estimates of different classes. For features 

with low dimensions, the separation of feature spaces 

was visualized based on the data distribution of our 

dataset. 

 

IV.EXISTING METHOD 

A. Detection of Abnormalities 

We first report the recall, precision and F-score of 
abnormality detections on our dataset. A 3-D ROI 

volume (regardless of tumor or abnormal lymph node) 

that was successfully detected was considered as true 

positive. A missed detection was false negative. A 

detected ROI volume that was actually a normal 

thoracic area was then false positive. The constant in (3) 

was determined as 0.18 using the learning-based 

procedure. As shown in Table I, with low-level features 

only, our method achieved 99.4% recall of 

abnormalities, with only one false negative detection, 

but at the expense of 51 false positives.

Fig. 2. Illustration of stage-2 on tumor and lymph node differentiation. (a) Transaxial PET-CT slice. (b) 

Abnormality detection output—two ROIs detected. (c) Region-level labeling with the unary term based on 

spatial and contextual features—the  two ROIs labeled as one tumor (gray) and one abnormal lymph node 

(white). (d) Volume-level labeling with the pairwise term based on 3-D spatial features. 
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With the inclusion of high-level features, the false 

positives were largely reduced and the precision of 

detection increased by about 13%. Although two more 

false negatives were produced with the high-level 

features, the overall performance was higher (93.1% 

F-score) with a better balance between the recall and 

precision. The false negatives were all at abnormal 

lymph nodes, which were hard to detect due to their 
relatively low SUVs close to  

 

TABLE II 

RESULTS OF ABNORMALITY DETECTION 

WITH LOW-LEVEL FEATURES ONLY OR 

INCLUDING THE HIGH-LEVEL FEATURES. 

(A) NUMBERS OF TRUE POSITIVES (TP), 

FALSE NEGATIVES (FN), AND FALSE 

POSITIVES (FP). (B) RECALL, PRECISION, 

AND F-SCORE (%) 

 
 

Fig.3. ROC curves of abnormality detection, for 

low-level features only or including the high-level 

features. 

the mediastinum. The false positives were detected at 

the high uptake regions in the mediastinum, because of 

either reasons: 1) the region represented high-uptake 

myocardium; or 2) the tumor in the same image set 

exhibited quite low SUV and hence the high-uptake 

region showed similar SUV to the tumor. For case 1), 

the stage-3 of our method targeted the detection of 

high uptake myocardium, and the results will be 

presented in the later section. For case 2), since the 

high-level feature worked based on the SUV contrast 

between ROIs and the mediastinum, if the contrast 

level was really low, such false positives could then 

remain. high-level features. The AUC values of both 

curves were 0.9512 and 0.9691, respectively. 

Although the difference in AUC was 

small, it can be seen from the curves that at near 100% 
true positive rates, there was large reduction in false 

positive rates with the high-level features. The 

discriminative power of the low-level intensity 

features can be seen from Fig.4, showing a clearer 

separation between the three types of structures with 

the normalized SUV than the original SUV. We also 

evaluated the feature space based on the third quartile 

of SUV for and and the first quartile for ROI to 

measure the overlaps between the upper SUV range of 

and the lower SUV range of ROI; and a similar 

difference in the feature separation was observed. 
Fig.5 shows the feature space of a subset of the high-

level features: ratio of average SUV between ROI 

region and the mediastinum, —ratio between and the 

lung field, and average SUV of . The feature space 

was computed for both the real ROIs and the false 

positives detected with the low-level features. The two 

clusters were well separated for each feature 

dimension, but quite close at the separation boundary 

and hence the remaining false positive or negative 

 

 
Fig.4. Scatter plots for the lung field, mediastinum 

and ROI areas based on (a) the original SUV and 

(b) the normalized SUV. 

 

 LOW HIGH  LOW HIGH 

TP 157 155 Recall 99.4 98.1 

FN 1 3 Precision 75.5 88.6 

FP 51 20 F-Score 85.9 93.1 
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Fig.5. Scatter plots of for ROI (the real ROI 

regions) and ROI-M (the regions initially detected 

as ROIs at low-level), showing the SUV ratios 

between the detected ROI and (a) the mediastinum 

and (b) the lung field. 

ROIs after the labeling with high-level features. 

The discriminative power was enhanced when all 

four feature dimensions were integrated with 

different feature weights. 

B. Computational Efficiency 
Table X shows the average computational time for a 3-

D image set (about 30 transaxial slice pairs). Our 

method was implemented in Matlab v2009b, running 

on a standard PC with a 2.66-GHz dual core CPU. In 

total, an average of 89.8 s was required, with about 

41% of the time spent on region clustering.  

 
Fig 6.Block Diagram of Existing Method  

The extraction of unary features for stage-2 was the 

second most time consuming component taking 21.9 s. 

The low-level labeling at stage-1 took about 12.5 s, 
which was mainly incurred by the SUV normalization 

step.  

 

 
 

Fig 7.Modified Block Diagram of Proposed System 

The other processing was much faster with lower 

feature dimensions. The following Fault identified and 

discussed in the Existing system Region based 

approach with spatial information method Learning 

based techniques with tumor specific features 

multistage discriminative model (MSD model). 

 

WATERSHED ALGORITHM 
The image to which the watershed is applied should 

have each region of the partition to be computed 

marked by a gray-scale minimum, and the boundaries 

of the regions marked by gray-scale maxima. As the 

image to be segmented usually does not satisfy these 

requirements, it is preprocessed to produce an image 

that better satisfies them. Three approaches are used to 

reduce over segmentation, the first part of all three 

paths is preprocessing and filtering, in which the aim 

of this step is to reduce the number of local minima 

and enhance the object boundaries. The result of this 
step is referred to as the segmentation image. The 

watershed can optionally be applied directly to this 

image. The aim of the filtering and preprocessing step 

is to create a segmentation image that satisfies the 

requirements for good watershed segmentation. This 

step has been divided into a filtering part, which has 

the aim of filtering noise and hence reducing the 

number of spurious local minima, and a preprocessing 

part, which aims to enhance the region boundaries. 

Watershed with Markers 

The watershed with markers can also be visualized by 

using the immersion simulation. The difference is that 
instead of punching holes at each local minimum of 

the topographic surface, holes are only punched at 
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positions specified by a set of markers. As only one 

region is created per marker, having fewer markers 

will reduce the number of regions in the final 

segmentation. To use markers in practice, one creates 

a marker image, which is a binary image in which 

each connected component corresponds to a marker, 

or, using the immersion visualization, a ‗‗hole‘‘ 

through which water will flow. A marker can range in 
size from a single pixel to a large, connected 

component. These markers are imposed on the image 

on which the watershed is to be calculated through 

minima imposition or swamping.                 

V. CONCLUSION AND FUTURE WORK 

We have presented a fully automatic detection method 

for lung tumor and disease in regional lymph node 

from PET-CT thoracic images. Abnormalities are first 

detected based on the low-level intensity and  

Contrast-type features, with a two-level SVM 

classification. The detected abnormalities are then 
differentiated into tumors or abnormal lymph nodes 

with a CRF model, based on the unary level 

Contextual and spatial features and pairwise-level 

spatial features. Another CRF model is then employed 

to relabel the detected tumors as either true tumor or 

mediastinum by filtering the high-uptake myocardium 

areas. The detection recall and precision were 

measured for each stage, and the discriminative power 

of each feature set was also evaluated. On a clinical 

dataset of 93 tumor and 65 abnormal lymph nodes 

from 85 3-D image sets, we found the proposed 
method showed high detection performance and 

capability in handling a wide variety of abnormal 

patterns. We are working on further reducing the false 

negatives of abnormal lymph nodes, which were 

produced due to undetected abnormalities or 

mislabeled as tumors, accounting for the 13.8% less 

recall from a total recall level. In This paper our 

current investigation is on improving shape analysis 

by coupling with spatial priors for better lymph node 

detection, while avoiding any impact on tumor 

detection.  Here STANFORD MODEL is used. This 

model is based on mathematical steps which are 
satisfying existing MSD model. So this Modification 

on this system gives a higher Efficiency on Medical 

image processing operations. The idea for the 

watershed transform comes from topography. A body 

of water and the surrounding region from which the 

Water drains into it is called a catchment basin. 
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